

RISE UP अकॅडमी

7058427775

डयत्ता: 5 वी ते 10 वी

आदर्श कॉलनी, औसा रोड, बरमदे हॉस्पिटल जवळ, लातुर

Class: 10 English / Semi-English

(State)

Subject : Geometry

Total Marks: 20

Chapter: Pythagoras Theorem & Circle

10th Geometry 20 Marks

Time: 1 Hr

Q.1) A) Choose the correct alternative for the following questions

[02]

- 1) Out of the dates given below which date constitutes a Pythagoras triplet?
- a) 15/08/17

Date: 27/07/25

- b) 16/08/16
- c) 03/05/17
- d) 04/09/15
- 2) In $\triangle ABC$, $AB = 6\sqrt{3}$, AC = 12 cm, BC = 6 cm. Find $\angle A = ?$
- a) 30°
- b) 60°
- d) 45°

Q.1) B) Solve the following questions

[01]

1) Find the diagonal of a rectangle whose sides are 35 m and 12 m.

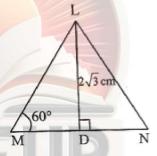
Q.2) A) Complete any one activity

[02]

1) Find the length of the side and perimeter of an equilateral triangle whose height is 2√3 cm. Let ΔLMN be the given equilateral triangle.

$$\therefore \angle M = 60^0 - - [----]$$

$$LD \perp MN, M - D - N.$$

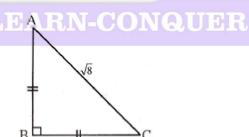

In
$$\Delta$$
LMD, $\angle M = 60^{\circ}$, $\angle LDM = 90^{\circ}$

$$\therefore \angle MLD = 30^0 - [----]$$

$$\therefore \Delta LMD$$
 is a 30° - 60° - 90° triangle.

$$\therefore LD = \frac{\sqrt{3}}{2} LM - ---- [-----]$$

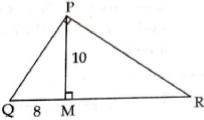
$$\Rightarrow LM = \square$$
, Perimeter of $\triangle LMN = 3 \times side = \square$

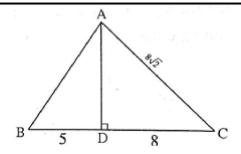


2) For finding AB and BC with the help of information in adjoining figure, complete the following activity

Solution: AB = BC --- (side opposite to congruent angle)

$$\therefore AB = BC = \frac{\square}{\square} \times AC = \frac{\square}{\square} \times \sqrt{8}$$
$$= \frac{\square}{\square} \times 2\sqrt{2} = 2 \text{ units}$$

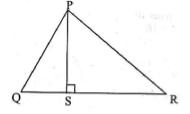

$$= \frac{\Box}{\Box} \times 2\sqrt{2} = 2 \text{ units}$$


Q.2) B) Solve any One sub question

[02]

1) In the adjoining figure, $\angle QPR = 90^{\circ}$, seg PM \Box hypo QR. Q - M - R. If PM = 10, QM = 8 then find QR.

2) In figure, $\triangle ABC$, seq AD \square seq BC, $\angle C = 45^{\circ}$, BD = 5 and AC = $8\sqrt{2}$ then find AD and BC.


Q.3) A) Complete any One activity

[03]

- 1) In $\triangle PQR$, seg PS \square side QR, then complete the activity to prove: $PQ^2 + RS^2 = PR^2 + QS^2$ In $\triangle PSQ$, $\angle PSQ = 90^{\circ}$
- $PS^2 + QS^2 = PQ^2$
- :. $PS^2 = PQ^2 \square$ ----- (i)

Similarly, In $\triangle PSR$, $\angle PSR = 90^{\circ}$.

- :. $PS^2 + \Box = PR^2$ ---- (ii)
- $\therefore PQ^2 \square = \square RS^2 --- [from (j), (ii)]$
- $PO^2 + \square = PR^2 + OS^2$

2) Observe the figure and fill in the blanks:

In ΔPMA and ΔPMB,

$$\angle PMA = \angle PMB = 90^{\circ}$$

Seg PM \cong ----- [common side]

Seg AM \cong ----- [c.s.s.t.]

Hence, perpendicular drawn from the

Center of a circle to a chord --- the chord.

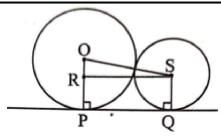

Q.3) B) Solve any One sub questions

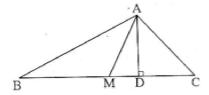
[03]

ii) FD

1) In the adjoining figure, $\angle DFE = 90^{\circ}$, FG \Box ED. if GD = 8, FG = 12 then find : i) EG

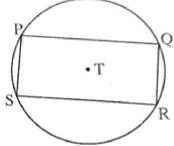
RISE- LEARN-CONQUER

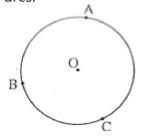

2) Prove that, In a circle (or in congruent circles), congruent chords have their corresponding arcs congruent.


Q.4) Solve any One sub questions

[04]

1) In the adjoining figure, line PQ is a common tangent to the externally touching circles and the radii of two circles are 25 cm and 9 cm. Find the length of the common tangent segment of these circles.


2) Apollonius theorem: In $\triangle ABC$, if M is the midpoint of BC then $AB^2 + AC^2 = 2AM^2 + 2BM^2$


Q.5) Solve any One sub question

[03]

1) In the figure, a rectangle PQRS is inscribed in a circle with center T. Prove that, i) arc PQ \cong arc SR ii) arc SPQ \cong arc PQR.

2) A, B, C are any points on the circle with center O. i) Write the names of all arcs formed due to these points. ii) If $m(arc BC) = 110^{\circ}$ and $m(arc AB) = 125^{\circ}$, find measure of all remaining arcs.

RISE-LEARN-CONQUER