

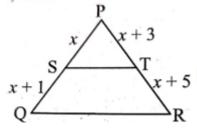
RISE UP अकॅडमी

इयत्ता: 5 वी ते 10 वी आदर्श कॉलनी, औसा रोड, बरमदे हॉस्पिटल जवळ, लातूर

Class: 10 English / Semi-English Subject : Geometry

Total Marks: 40

(State)

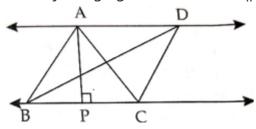

Date: Time:

10th Geometry 40 Marks

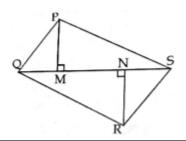
Q.1) A) Choose the correct alternative for the following questions

[04]

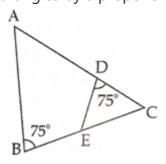
- 1) The length of longest segment which can be drawn in a rectangle of length 84 cm and breadth 13 cm is -----
- a) 84 cm
- b) 85 cm
- c) 86 cm
- d) 97 cm
- 2) In $\triangle PQR$ if $ST \parallel QR$, then what is the value of x?
- b) 2
- c) 3
- d) 4


- 3) Out of the following which is the Pythagoras triplet?
- a) (1, 5, 10)
- b) (3, 4, 5)
- c) (2, 2, 2) d) (5, 5, 2)
- 4) 11, 60, -----is a Pythagorean triplet.
- a) 74
- b) 27
- c) 13
- d) 61

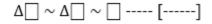
CADEEMY

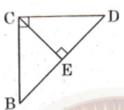

Q.1) B) Solve the following questions

[04]


- 1) $\triangle ABC \sim \triangle DEF$, $\angle A = 45^{\circ}$ and $\angle F = 60^{\circ}$ then $\angle B = ?$
- 2) In adjoining figure, AP \perp BC, AD || BC then find A(\triangle ABC) : A(\triangle BCD)

3) In the adjoining figure, PM = 10 cm, $A(\Delta PQS) = 100 \text{ sg cm}$, $A(\Delta QRS) = 110 \text{ sg cm}$ then find NR.


4) In adjoining figure, $\angle ABC = 75^{\circ}$, state which two triangles are similar and by which test? Also, triangles by a proper one to one correspondence.



Q.2) A) Complete any two activities

[04]

1) Observe the figure and fill in the boxes.

2) In the figure, seg AB | seg QR, seg AR and seg BQ intersect in point P.

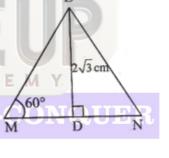
In ΔAPB and Δ RPQ,

$$\angle APB \cong \angle RPQ ---- [-----]$$

3) Find the length of the side and perimeter of an equilateral triangle whose height is $2\sqrt{3}$ cm. Let Δ LMN be the given equilateral triangle.

$$\therefore \ \angle M \ = \ 60^0 \, ---- \, \left[-----\right]$$

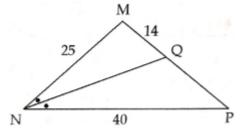
$$LD \perp MN, M - D - N.$$


In
$$\Delta$$
LMD, $\angle M = 60^{\circ}$, $\angle LDM = 90^{\circ}$

$$\therefore \angle MLD = 30^{\circ} - [----]$$

$$\therefore \Delta LMD$$
 is a 30° - 60° - 90° triangle. C A D E E

$$\therefore LD = \frac{\sqrt{3}}{2} LM - ---- [----]SE - LEARN$$


$$\Rightarrow LM = \square$$
, Perimeter of $\triangle LMN = 3 \times side = \square$

Q.2) B) Solve any Four sub questions

[08]

1) Find QP using given information in the figure.

2) \triangle ABC ~ \triangle PQR, A(\triangle ABC) = 81 cm², A(\triangle PQR) = 121 cm². If BC = 6.3 cm, then find QR.

3) Prove that: In a right- angled triangle, the length of perpendicular segment drawn on the hypotenuse from the opposite vertex, is the geometric mean of the segments into which the hypotenuse is divided.

4) In $\triangle ABC$, point M is midpoint of side BC. If $AB^2 + AC^2 = 290$ cm² and AM = 8 cm, find BC.

Q.3) A) Complete any One activity

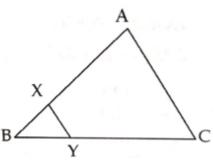
[03]

1) In the adjoining figure, XY \parallel seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.

Activity: 2AX = 3BX

$$\therefore \ \frac{AX}{BX} = \frac{\square}{\square}$$

$$\therefore \frac{AX+BX}{BX} = \frac{\Box + \Box}{\Box}$$


$$\therefore \ \frac{AB}{BX} = \frac{\square}{\square}$$

∴ ΔBCA~ΔBYX ----- (AA test)

$$\therefore \frac{BA}{BX} = \frac{AC}{XY} - \cdots - (c.s.s.t.)$$

$$\therefore \ \, \frac{\square}{\square} = \frac{AC}{9}$$

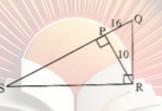
$$\therefore$$
 AC = 22.5 units

2) In the given figure, \angle QRS=90°, RP \perp SQ. If PQ = 16, RP = 10, find: i) SP ii) RQ

iii) SR

Solution: i) In $\triangle QSR$, $\angle QRS = 90^{\circ}$

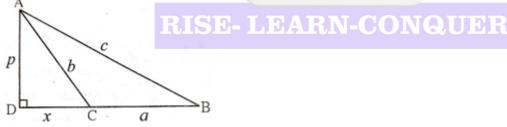
And RP
$$\perp$$
 SQ. $\therefore RP^2 = \square \times SP$


$$\therefore SP = \bigcap \cdots [\cdots]$$

ii) In
$$\triangle RPQ$$
, $\angle RPQ = 90^{\circ}$

$$\therefore RQ^2 = RP^2 + PQ^2 - \cdots - [-\cdots]$$

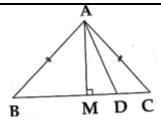
iii) In
$$\triangle SPR$$
, $\angle SPR = 90^{\circ}$


$$\therefore SR^2 = \square \therefore SR = \square$$

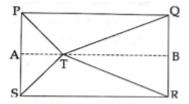
Q.3) B) Solve any Two sub questions

[06]

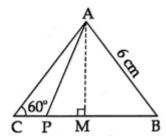
- 1) Prove that: In a triangle, the angle bisector divides the side opposite to the angle in the ratio of the remaining sides.
- 2) In $\triangle ABC$, $\angle ACB > 90^{\circ}$, seg AD \perp seg BC, then prove that, $AB^2 = BC^2 + AC^2 + 2BC \times BD$.



- 3) In $\triangle ABC$, AB = 10, AC = 7, BC = 9. Find the length of the median drawn from point C to side AB.
- 4) Sum of the squares of adjacent sides of a parallelogram is 130 cm² and length of one of its diagonal is 14 cm. Find length of the other diagonal.


Q.4) Solve any Two sub questions

[80]


1) In $\triangle ABC$, $\angle A = 90^{\circ}$, AB = AC, D is any point on BC. Prove that, $BD^2 + CD^2 = 2AD^2$.

2) In adjoining figure, point T is in the interior of rectangle PQRS. Prove that, $TS^2 + TQ^2 = TP^2 + TR^2$

3) \triangle ABC is an equilateral triangle. Point P is on base BC such that, PC = 1/3 BC, if AB = 6 cm, find AP.

Q.5) Solve any One sub question

[03]

- 1) In an isosceles $\triangle ABC$, with AB = AC, $BD \perp AC$. Prove that: $BD^2 CD^2 = 2CD \times AD$
- 2) Adjacent sides of a parallelogram are 11 cm and 17 cm. if one of its diagonal is 26 cm, then find the length of its other diagonal.

RISE-LEARN-CONQUER